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ABSTRACT 

 

The overarching objective of this study revolves around 

employing advanced machine learning methodologies to 

predict pathological complete response (PCR) and relapse-

free survival (RFS) in breast cancer patients engaging in 

chemotherapy, leveraging a dataset which comprises 

clinically measured features as well as pre-chemotherapy 

MRI-derived features. Stringent validation procedures will 

ensure generalization to unexplored data, addressing 

performance, interpretability, and ethical considerations. The 

research aims to enhance breast cancer treatment 

possibilities, focusing on personalized and effective 

approaches for diverse patient demographics. 

 

1. INTRODUCTION 

 

Breast cancer remains a prominent health concern for women 

in the United Kingdom, necessitating effective treatment 

strategies. Chemotherapy is commonly employed to shrink 

locally advanced malignancies before surgical intervention, 

yet its variable effectiveness and intrinsic toxicity pose 

challenges. Achieving pathological complete response (PCR) 

post-surgery enhances the probability of cure and prolongs 

relapse-free survival (RFS). Despite chemotherapy's critical 

role, only 25% of patients achieve PCR, leaving 75% with 

residual disease and diverse prognoses. Improved patient 

segmentation and tailored treatment are imperative. 

Advanced machine learning algorithms, utilizing clinically 

assessed parameters and features extracted from pre-

chemotherapy magnetic resonance imaging (MRI), offer a 

promising avenue for predictive competence in estimating 

PCR and RFS. 

2. DATASET 

 

The dataset for this research is sourced from The American 

College of Radiology Imaging Network's I-SPY 2 TRIAL, 

dedicated to breast cancer research. The training dataset 

(trainDataset.xls) comprises 400 patients with 10 clinical 

features, including Age, ER, PgG, HER2, Triple-Negative 

Status, Chemotherapy Grade, Tumor Proliferation, Histology 

Type, Lymph Node Status, and Tumor Stage. Additionally, 

107 MRI-based characteristics obtained using Pyradiomics 

elevate the dataset's complexity. The value "999" denotes 

missing data points, reflecting real-world data challenges. 

This training dataset forms the basis for machine learning 

model development, with a separate test dataset reserved for 

performance evaluation. Discrepancies in the ratio of PCR-

positive to PCR-negative instances add complexity, requiring 

advanced predictive modelling techniques. The 'pCR 

(outcome)' feature serves as the classification model's target 

variable among 119 features, while 'RelapseFreeSurvival 

(outcome)' is designated for the regression model. 

Recognizing machine learning's potential in this context is 

crucial for enhancing breast cancer treatment precision and 

efficacy through data-driven insights. 

 

3. DATA CLEANING AND PREPROCESSING 

 

Several procedures were performed during the data cleaning 

and preparation phase to ensure the dataset's quality and 

applicability for machine learning research. Further 

examinations against redundant information, inconsistencies, 

and data types showed no duplications, inconsistencies, or 

numeric data. These preprocessing methods enhanced the 

dataset's quality and prepared it for the machine learning 

development of models. 

 

3.1. Drop Columns 

 

To begin with, the 'ID' field was dropped from the 

dataset because it was deemed of little significance for 

predicting outcomes. Since each data point has a unique "ID", 

an "ID" column does not add to these patterns. Additionally, 

due to its categorical nature, it may raise the dimensionality 

of the feature space without contributing any additional 

benefit when one-hot encoded.  

 

3.2. Missing Values 

 

A mean replacement technique was used to address missing 

values designated as '999,' and the resulting numbers were 

rounded to integers in order to maintain the originality of the 

dataset. By replacing missing numbers with the mean, you 

are effectively replacing them with a value that accurately 

reflects the data's central tendency. This retains the general 

distribution and introduces no major bias.  

 

3.3. Outliers 

 
Outliers were managed through z-score normalization, 

excluding 'pCR (outcome)' and 'RelapseFreeSurvival 

(outcome)' as they served as primary target variables. 

Utilizing z-scores within the range of -3 to 3 for outlier 



identification offers a standardized, straightforward, and 

quantifiable method. This approach maintains uniformity, 

simplicity in implementation, and a measurable indication of 

data points' deviation from the mean, robust to skewness. 

 

3.4. One- Hot Encoding 

 

To accommodate multi-class records within a specific 

column, relevant columns were encoded using One-Hot 

Encoding technique. By transforming categorical data into a 

binary format, One-Hot Encoding retains the distinctiveness 

of categories, minimizing ordinal misinterpretation, and 

strengthening compatibility with different machine learning 

techniques. List of categorical variables- ‘ER', 'PgR', 'HER2', 

'TrippleNegative', 'ChemoGrade', 'Proliferation', 

'HistologyType', 'LNStatus', 'TumourStage'. 

 

3.5. Normalization 

 

Normalization is pivotal in machine learning preprocessing 

to ensure consistent feature scales, prevent variable 

dominance, aid algorithm convergence, enhance model 

flexibility, and improve the performance of algorithms 

sensitive to varying feature scales. The dataset underwent 

normalization using StandardScaler, with the exclusion of 

target variables. The application of Standard Scaler is chosen 

for normalization due to its promotion of scale consistency, 

compatibility with various algorithms, expedited 

convergence, optimized interpretability, robustness to 

outliers, facilitation of regularization, adherence to statistical 

assumptions, reduced complexity in hyperparameter tuning, 

and enhanced model performance. 

 

3.6. Handling Class Imbalances 

 

 Finally, to eliminate any potential class imbalances in 

classification models, the oversampling issue was addressed 

using Random Oversampling. As oversampling produces 

more representative data for minority groups, it reduces bias 

and improves pattern capture without additionally wasting 

information. In case of classification, the pre-processed 

dataset contains 84 for target class 1 and 316 of target class 0 

. Since the dataset is imbalanced, oversampling method is 

used to balance. 
 

3.7. X and y  Split  

 

The normalised dataset was subsequently split into target and 

predictor variables, with 'pCR (outcome)' and 

'RelapseFreeSurvival (outcome)' serving as the goal 

parameters (X) for classification and regression models, 

respectively, with the remaining variables serving as 

predicting factors (y).  

 

 

 

4. FEATURE ENGINEERING 

 

In the feature engineering phase, a systematic approach was 

taken to enhance the predictive capabilities of the dataset. 

This was conducted using the embedded method, Dimension 

reduction and finally train-test split to facilitate model 

evaluation. These feature engineering strategies collectively 

contribute to refining the dataset and optimizing its suitability 

for subsequent machine learning model development and 

evaluation. 

 

4.1. Feature Selection 

 

Feature selection was conducted using the embedded method 

known as The Least Absolute Shrinkage and Selection 

Operator (LASSO). This technique, particularly effective 

with numerous features, automatically selects features by 

minimizing the error sum of squares through coefficient 

penalization. In this study, LASSO Regression utilized a 

hyperparameter alpha set to 0.01 for balanced feature 

selection. Table [4.1.1] demonstrates a comparison of Lasso, 

Ridge, and Elastic Net. Lasso excelled in effectively 

minimizing features, while Ridge retained features and 

Elastic Net yielded zero columns. Consequently, Lasso was 

chosen for feature selection. Additionally, Lasso (L1 

regularization) is often preferred over Ridge and Elastic Net 

as it incorporates an inherent feature selection process, 

promoting sparsity by driving certain coefficients to zero, 

resulting in simpler and more interpretable models. 

 

Feature Selection 

Method 

Parameters Selected features 

count 

LASSO alpha=0.01 41 

RIDGE alpha=1.0 130 

ELASTIC NET alpha=1.0, 

l1_ratio=0.5 

0 

[4.1.1] Comparison between Feature Selection Methods 

 

4.2. Train and Test Split 

 

The processed dataset underwent a train-test split to facilitate 

model evaluation. The hyperparameter test size was set to 0.2, 

indicating a 20% allocation for testing data, while the 

remaining 80% constitutes the training set. Also, random 

state was fixed at 42 to ensure result reproducibility. 

 

5. MODEL SELECTION 

 

In model selection, three models were chosen for each 

classification and regression task. This deliberate choice 

includes a mix of models suitable for both linear and non-

linear data, ranging from simpler to more advanced models. 

This diverse selection aims to facilitate a thorough 

comparison, shedding light on the performance nuances 

across different data scenarios for a comprehensive 

understanding. 



 

5.1. Classification 

 

In the model selection process, three classifiers—

AdaBoostClassifier, DecisionTreeClassifier, and 

LogisticRegression—were assessed based on their balanced 

accuracy and corresponding parameters. AdaBoost combines 

shallow decision trees sequentially to improve predictive 

accuracy, especially useful when individual models perform 

sub optimally. Decision Trees, known for their hierarchical 

structure, make binary decisions at each node and capture 

intricate non-linear relationships. Logistic Regression models 

the probability of an instance belonging to a class by fitting a 

logistic function to input features. Together, these 

methodologies play a crucial role in addressing diverse 

classification challenges in academic research. 

 

5.2. Regression 

 

In the regression analysis, Support Vector Regression (SVR), 

Gradient Boosting, and LASSO Regression were applied. 

Similar to Ada Boosting, Gradient Boosting employs weak 

decision trees but prioritizes error correction by modeling 

residuals, distinguishing it from Ada Boost's instance 

weighting based on misclassification. Support Vector 

Regression (SVR) aims to identify an optimal hyperplane 

representing the data, minimizing errors through margin 

optimization. Notably, our study observed superior 

performance with the linear configuration of SVR. LASSO 

Regression, introduces regularization by penalizing the 

absolute values of the regression coefficients. Together, these 

regression techniques, chosen for their diverse approaches, 

contribute to a comprehensive exploration of predictive 

modelling in our research, incorporating nuances from both 

error correction and regularization. 

 
 

6. HYPERPARAMETER TUNING 

 

GridSearchCV is employed for hyperparameter tuning in 

both the classification of Pathological Complete Response 

(PCR) and the regression of Recurrence-Free Survival (RFS). 

It is selected for its ability to thoroughly assess all 

combinations in a predefined grid, ensuring comprehensive 

evaluation through cross-validation.  

 

       For classification, Grid search is conducted with K-fold 

validation, where K is set to 5. The scoring metric employed 

is balanced_accuracy.  

 

𝑔𝑟𝑖𝑑_𝑠𝑒𝑎𝑟𝑐ℎ 
=  𝐺𝑟𝑖𝑑𝑆𝑒𝑎𝑟𝑐ℎ𝐶𝑉(𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟, 𝑝𝑎𝑟𝑎𝑚_𝑔𝑟𝑖𝑑, 𝑐𝑣
= 5, 𝑠𝑐𝑜𝑟𝑖𝑛𝑔 = ′𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦′, 𝑛_𝑗𝑜𝑏𝑠 = −1) 

 

Model Balanced 

Accuracy 

Best Parameters 

AdaBoostClassifi

er 

86.9% {'algorithm': 

'SAMME.R','base_estim

ator': 

DecisionTreeClassifier('l

earning_rate': 1.0, 

'n_estimators': 200} 

DecisionTreeClas

sifier 

89.7% {'criterion': 'gini', 

'max_depth': 45, 

'max_features': 'auto', 

'min_samples_leaf': 1, 

'min_samples_split': 2, 

'splitter': 'best'} 

LogisticRegressio

n 

70.5% {'C': 1, 'fit_intercept': 

False, 'max_iter': 50, 

'penalty': 'l2', 'solver': 

'lbfgs'} 

6.1.1. Results from GridSearchCV for classification. 

 

        Table [6.1.1] demonstrates the robust performance of 

the decision tree model. The efficacy of Ada Boost is found 

to be marginally diminished. This is attributable to Ada 

Boost's reliance on an ensemble of decision trees with 

varying individual performances. Notably, the decision tree 

exhibits superior performance compared to logistic 

regression, primarily attributed to its inherent capacity to 

capture nuanced non-linear relationships within our dataset. 

 

       For regression, Grid search is executed with K-fold 

validation, where K is set to 5. The scoring metric utilized is 

the balanced 'neg_mean_absolute_error.' 

 

𝑔𝑟𝑖𝑑_𝑠𝑒𝑎𝑟𝑐ℎ 
=  𝐺𝑟𝑖𝑑𝑆𝑒𝑎𝑟𝑐ℎ𝐶𝑉(𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟, 𝑝𝑎𝑟𝑎𝑚_𝑔𝑟𝑖𝑑, 𝑐𝑣
= 5, 𝑠𝑐𝑜𝑟𝑖𝑛𝑔 = ′𝑛𝑒𝑔_𝑚𝑒𝑎𝑛_𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒_𝑒𝑟𝑟𝑜𝑟′, 𝑛_𝑗𝑜𝑏𝑠
= −1, 𝑣𝑒𝑟𝑏𝑜𝑠𝑒 = 2) 

 

Model MAE (Mean 

Absolute 

Error) 

 

Parameters 

SVR(Support vector 

regression) 

22.96 {'C': 0.1, 'epsilon': 

0.1, 'gamma': 

'auto', 'kernel': 

'linear'} 

GradientBoostingReg

ressor 

20.78 {'learning_rate': 

0.01, 'loss': 

absolute_error, 

'max_depth': 4, 

'max_features': 

'auto', 

'min_samples_leaf'

: 2, 

'min_samples_split'

: 2, 'n_estimators': 

400, 'subsample': 

0.8} 



LASSO 23.41 {'alpha': 1, 

'fit_intercept': 

True, 'max_iter': 

100} 

6.2.1. Results from GridSearchCV for regression. 

 

Based on Table [6.2.1], Gradient Boosting Regression 

consistently surpasses SVR and Lasso Regression in 

performance, attributed to its adept handling of non-linear 

relationships, adaptability to complex patterns, and resilience 

against outliers. While SVR and Lasso Regression exhibit 

strengths in certain contexts, the ensemble approach of 

gradient boosting renders it versatile and potent across a 

diverse array of regression problems. The sequential error 

correction during training further enhances its predictive 

prowess. 

 

7. K-FOLD VALIDATION – MODEL VALIDATION 

 

K-fold validation is employed for robust model validation, 

ensuring a thorough assessment of performance in 

Pathological Complete Response (PCR) classification and 

Recurrence-Free Survival (RFS) regression. This approach 

optimally uses available data, mitigating overfitting and 

enhancing generalization to new data. The use of K-fold 

validation aids in visualizing training and validation metrics, 

facilitating the identification of overfitting and underfitting. 

 

       For classification tasks, K-fold validation with Cv=5 is 

implemented, utilizing the balanced_accuracy metric for 

scoring. In regression scenarios, ‘cv=5’ is employed, with 

mean absolute error (MAE) serving as the scoring metric. 

 

 
Fig [1] Model Performance for Classification - Decision 

Tree  

 

 
Fig [2] Model Performance for Regression - 

GradientBoosting 

     Fig [1], Fig [2] aid in assessing the model's generalization 

to unseen data across folds. The plots offers insights into the 

model's performance consistency across diverse subsets of 

the data. 

 

8. PREDICTING USING THE TEST SET 

 

The trained classifier's predict method generates predictions 

for the test set's feature matrix (X_test). The resulting array 

(y_pred) with predicted labels is then compared to the true 

labels (y_test) for performance evaluation. 

  

      The balanced_accuracy_score is calculated to be 95.24% 

using the following formula: 

 
𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 

1

2
(

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐶𝑙𝑎𝑠𝑠
+

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒(𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐶𝑙𝑎𝑠𝑠
) 

 

      Balanced accuracy has been chosen due to its robustness 

in predicting with test sets, particularly in imbalanced 

datasets. It ensures a fair evaluation of the classifier's 

performance across all classes, thereby enhancing reliability 

in real-world scenarios characterized by uneven class 

distributions. 

 

Classification 

Model Balanced 

Accuracy 

score 

AdaBoost 94.4% 

DecisionTree 98.4% 

Logistic 

Regression 

75.9% 

 8.1.1. Test Prediction Results for Classification and 

Regression. 

 

According to Table [8.1.1], the decision tree yielded the 

highest performance with a balanced accuracy of 98.4%, 

while gradient boosting regression exhibited the lowest Mean 

Absolute Error (MAE) at 13.16. Consequently, the decision 

has been made to employ the decision tree for predicting PCR 

outcomes and gradient boosting regression for forecasting 

RFS results. 

 

9. CONCLUSION 

 

This research focuses on utilizing machine learning to detect 

breast cancer using a dataset of 400 patients with clinical and 

MRI features. The approach involved robust pre-processing, 

addressing imbalances, and feature selection via LASSO 

regression. Decision Tree excelled in classification, while 

Gradient Boosting Regression outperformed in regression 

tasks. Hyperparameter tuning and cross-validation optimized 

our models, emphasizing the efficacy of our approach for 

accurate breast cancer prediction. 

 

Regression 

Model MAE 

GradientBoost 13.16 

SVR 21.25 

LASSO 20.72 
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